

SOIL HEALTH PREDICTIVE ASSESSMENT REPORT

ABRIDGED VERSION

For: Zac Weidner Macoupin County, Illinois Date: March 2, 2021 By: Sarah Blount AFT Midwest Conservation Technician sblount@farmland.org, (765) 256-0660

Study Area and Planned Practices:

- Study Area Name and Acreage: Janet's 40, 40-acre field
- Crop Rotation: Corn-Soybean
- Soil Health Practices Assessed:
 - No-Till Reduced, vertical tillage to no-till for corn
 - Cover Crops No cover crop to cover crop mix planted in Fall after corn and soybean
 - Nutrient Management No Anhydrous Ammonia applied in Fall after corn

Short-Term Economic Analysis

Potential Short-Term Annual Economic Effects:

Table 1: Potential Short-Term Annual Economic Effects of Soil Health Practices

Positive Effe	ects			Negative Eff	ects		
Increase in Income				Decrease in Income			
ltem	Per Acre	Acres	Total	ltem	Per Acre	Acres	Total
None identified	\$0.00	0	\$0	None identified	\$0.00	0	\$0
Total Increased Income			\$0	0 Total Decreased Income			\$0
Decrease in Cost				Increase in Cost			
ltem	Per Acre	Acres	Total	ltem	Per Acre	Acres	Total
Machinery cost savings due to no-till	\$6.17	40	\$247	Typical learning costs	\$2.81	40	\$112
Herbicide savings for soybeans due to							
cover cropping	\$21.50	20	\$430	Cover crop costs	\$43.70	40	\$1,748
Machinery cost savings due to one less				Increased fertilizer cost for corn due to			
fertilizer application	\$12.29	40	\$492	cover crops	\$4.20	20	\$84
Fertilizer savings for corn due to							
change in nutrient management	\$9.80	20	\$196	2x2 equipment upgrade	\$4.00	40	\$160
Work moves from spring to fall (better							
distribution of labor)	\$7.50	40	\$300	Liquid storage tanks	\$2.00	40	\$80
Reduced erosion keeps nutrients in							
field and eliminates field repairs	\$28.88	40	\$1,155	Liquid tender	\$3.00	40	\$120
			\$2,820	Total Increased Cost			\$2,304
Annual Total Increased Net Income \$2,8			\$2,820	Annual Total Decreased Net Income \$2			
Total Acres in this Study Area			40	Total Acres in this Study Area			
Annual Per Acre Increased Net Income			\$71	Annual Per Acre Decreased Net Income			
Annual Ch	Annual Change in Total Net Income = \$516						
Annual Change in Net Income Per Acre = \$13							
	Return	n on Inve	estment	= 22%			

Notes:

- This table represents costs and benefits over the entire study area (40 acres) as reported by the farmer.
- All values are in 2019 dollars except for fertilizer values.
- Farmer-supplied fertilizer prices: Nitrogen: \$.28/Lb, Phosphate: \$.37/Lb, Sulfur: \$.54/Lb (Zac Weidner, 2020).
- Reduced soil erosion benefits are based on farmer-estimated savings in field repairs.

Long-Term Economic Analysis

Potential Long-Term Economic Effects due to increase in Soil Organic Matter:

Table 2: Potential Long-Term Annual Benefits for 20 Years of Soil Health Practice Use

Benefit Category	Per Acre	Affected Acres	Study Area
Discounted Annual Yield Increase	\$48.31	40	\$1,932
Discounted Annual Soil Fertility Benefit	\$4.22	40	\$169
Discounted Annual Water Storage Benefits	\$4.49	40	\$180
Total Annual Long-Term Benefits	\$57.02	40	\$2,281

Table 3: Potential Long-Term Annual Benefits for 5 Years of Soil Health Practice Use

Benefit Category	Per Acre	Affected Acres	Study Area
Discounted Annual Yield Increase	\$15.33	40	\$613
Discounted Annual Soil Fertility Benefit	\$1.34	40	\$54
Discounted Annual Water Storage Benefits	\$1.43	40	\$57
Total Annual Long-Term Benefits	\$18.10	40	\$724

Table 4: Predictive Assessment Short-Term and Long-Term Combined Results

5-Year Planning Horizon				
Result Category	Per Acre	Affected Acres	Study Area	
Short-Term Annual Change in Net Income	\$13	40	\$516	
Total Annual Long-Term Benefits	\$18	40	\$724	
Total Long-Term and Short-Term Annual Change in Net Income	\$31	40	\$1,240	
Return on Investment	53%			
Number of Years before Break Even	0			
I	-			
20-Year Planning	Horizon			
20-Year Planning Result Category	Horizon Per Acre	Affected Acres	Study Area	
		Affected Acres 40	Study Area \$516	
Result Category	Per Acre		•	
Result Category Short-Term Annual Change in Net Income	Per Acre \$13	40	\$516	
Result Category Short-Term Annual Change in Net Income Total Annual Long-Term Benefits	Per Acre \$13 \$57	40 40	\$516 \$2,281	

Summary of Results

- The short-term analysis estimates a \$13 potential increase in net income per acre per year and a 22% return on investment (ROI).
- The long-term 5-year analysis estimates that, with improved soil health, net income could improve by an additional \$18 per acre per year, resulting in a total long-term and short-term annual change in net income of \$31 per acre per year, or a 53% ROI.
- The long-term 20-year analysis indicates that, with improved soil health, net income could improve by an additional \$57 per acre per year, resulting in a total long-term and short-term annual change in net income of \$70 per acre per year, or a 121% ROI.
- The break-even analysis determines the year that cumulative total benefits exceed cumulative total costs. In Zac's case, the break-even analysis indicates that in year one of soil health practice adoption, Zac's investment in soil health practices is profitable.